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ABSTRACT 

In a recent paper,  B. Y. Chen proved a basic inequality between the intrin- 

sic scalar invariants inf K and ~- of M n, and the extrinsic scalar invariant 

[H{, being the length of the mean curvature vector field H of M n in E m . 

In the present paper  we classify the submanifolds M n of l~rn for which 
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the basic inequality actually is an equality, under the additional assump- 

tion that  M n satisfies some of the most primitive Riemannian curvature 

conditions, such as to be Einstein, conformally flat or semi-symmetric. 

1. I n t r o d u c t i o n  

Let M n be an n-dimensional submanifold of a Euclidean space E m of dimension 

m = n + p , p  > 1, n _> 2. Let g be the Riemannian metric induced on M n from 

the standard metric on E m, V the corresponding Levi Civita connection on M n, 

and R, S and T respectively the R i e m a n n - C h r i s t o f f e l  c u r v a t u r e  t ensor ,  the 

Ricci  t e n s o r  and the scalar  c u r v a t u r e  of M ~. We use the sign convention 

given by R ( X ,  Y) = [Vx, ~Ty]- ~[X,Y] and the normalization of the scalar curva- 

ture given by ~- = ~-:~i~,j=l K(ei  A ej) where K denotes the sec t iona l  c u r v a t u r e  

and ei A ej is the plane section of T M  ~ spanned by the vectors el and ej for 

(i ¢ j)  of an orthonormal tangent frame field e l , . . . ,  en on M ~. 

Consider the real function inf K on M ~ defined for every p E M by 

(inf K)(p) := inf{K(~r)[zr is a plane in TpMn}.  

Note that since the set of planes at a certain point is compact, this infimum 

is actually a minimum. Then B. Y. Chen proved the following basic inequality 

between the in t r ins ic  scalar invariants i n fK  and ~- of M n, and the ex t r ins ic  

scalar invariant 1HI, being the length of the m e a n  c u r v a t u r e  vector field H of 

M ~ in Em. 

Let M n , n  _> 2, be any submanifold o r e  "~, m = n + p, p >_ 1. LEMMA ([1]): 
Then 

1 n2(n - 2) 
(*) infK_> ~{T n L ; ]  tH[2}. 

Equality holds in ( .)  at a point x i f  and only i f  with respect to suitable local 

orthonormal frames e l , . . . ,  en E T x M  n and en+l , . . . ,  e~+p E T ~ M  n, the Wein- 

garten maps 

given by (iO00''" 0 O0 b 0 0 . . .  0 
0 p 0 -. .  0 

A1 = 0 0 # .-. 0 

• . • • o " 

0 0 0 -..  # 

At with respect to the normal sections ~t = en+t, t = 1 , . . . , p  are 

dt - c t  0 " "  0 

, A ~ =  o o - . .  , ( t > l ) ,  

0 0 . .-  
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where # -- a + b. For any such frame, inf K(p)  is at tained by the plane el A e2. 

R e m a r k  1: As stated above, this is only the special case of Chen's lemma in 

case that  the ambient space is Euclidean. A similar inequality also holds for any 

real space form as ambient space [1,2], as well as for totally real submanifolds in 

any complex space form and C-totally real submanifolds in any Sasakian space 

form [3]. 

R e m a r k  2: For dimension n = 2, (*) is trivially satisfied. 

R e m a r k  3: If  we choose an orthonormal basis in the following, we always take 

a basis as in the Lemma. Although the plane el A e2 is not always uniquely 

determined, the sectional curvature K ( e l  A e2) is well defined, but depends in 

general only continuously on the point, as follows easily from the fact that  K ( e l  A 

e2) = inf K.  

The purpose of the present paper is to study the submanifolds M n of ]~m 

for which the basic inequality actually is an equa l i ty ,  under the additional as- 

sumption that  M ~ satisfies some of the most primitive Riemannian curvature 

conditions, such as to be E ins t e in ,  c o n f o r m a l l y  f la t  or s e m i - s y m m e t r i c .  For 

the computations in the subsequent sections, we need the following formulas for 

K~s = K(e~ A es): 

n 

/k '12 : ab - E (c2 t  + d2), K l j  -~ alt, K 2 j  = b#, K i j  = #2, 
t = 2  

where i , j  > 2. Furthermore, R(ei ,  ej)ek = 0 if i, j and k are mutually different. 

2. E i n s t e i n  s u b m a n i f o l d s  sa t i s fy ing  C h e n ' s  equa l i t y  

THEOREM 1: Let  M n, n >_ 3, be a submanifold o f E  m satisfying Chen's equality. 

Then M "~ is Einstein i f  and only i f  M ~ is a totally geodesic n-plane in E m . 

Proof." For a submanifold M ~ satisfying the equality in (*), we see that  the 

Ricci curvatures of M ~ are given by 

RiCl = (n - 2)art + K12, 

Ric2 = (n - 2)b# + K12, 

Rico . . . . .  Ric,  = (n - 2)tt 2, 
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and S(ei, ej) = 0 is i ¢ j .  

Now suppose tha t  M n is Einstein. Then from Ricl -- Ric2 we derive tha t  

p = 0 or a = b. In  case p = 0, from RiCl = Ric3 = 0 we get tha t  M is to ta l ly  

geodesic. In  case a = b, then p -- a + b = 2a, and from Ricl = Ric3 we find tha t  

(2n - 5 )a  2 p 2 d 2 + ~_,t=2(ct + t) = O. Since moreover n _> 3, this implies tha t  also in 

this case a -- b = # = ct = dt = 0, i.e. tha t  M n is total ly geodesic in E TM. | 

3. C o n f o r m a l l y  f ia t  s u b m a n i f o l d s  s a t i s f y i n g  C h e n ' s  equality 

We recall tha t  a hypersurface M n in E n+l is called k - q u a s i - u m b i l i c a l ,  if at each 

point  it has a principal curvature of multiplicity > n - k [9]. Usually 1-quasi- 

umbilical hypersurfaces are simply called quasi-umbilical. From the Lemma it 

is clear tha t  hypersurfaces which satisfy Chen's  equality are special examples of 

2-quasi-umbilical hypersurfaces. From the Lemma and from Proposi t ion 3 of [6], 

we obtain  at  once the following. 

PROPOSITION 2: Let M ~, n >_ 3, be a hypersurface in E n+y satisfying Chen's 

equality. Then M n is quasi-umbilical if  and only i f  M ~ is a hyperplane, a spherical 

hypercylinder S ~-1 x R or a round hypercone, or, in case n = 3, M s is the 

hypersuHace of revolution obtained by revolving in E 4 the planar curve which 

is the graph of the function ¢ given by ¢(x) = h - l ( x )  for x < O, ¢(0) -- 1, 

¢(x) = h - l ( - x )  for x > 0 where 

f l  ~ dt el0, 1[. h(x) = 

For dimension n > 3, by a result of E. Cartan,  a hypersurface M '~ in E '~+1 is 

quasi-umbilical if and only if it is c o n f o r m a l l y  f iat ,  i.e. by a result of H. Weyl if 

the conformal curvature tensor C = 0. If  n = 3, then C -- 0 automatically,  and 

then the above equivalence no longer holds [8]. 

COROLLARY 3: Let M n , n  > 3, be a hypersurface in E n+l satisfying Chen's 

equality. Then M n is conformally fiat if  and only if  M n is a hyperplane, a 

spherical hypercylinder S n-1 x R or a round hypercone. 

As (0, 4)-tensor, Weyl 's  conformal curvature tensor C is defined by 

C(X,  Y; Z, W)  = R(X ,  Y; Z, W)  - ~-~_2{ S(X ,  W)g(Y, Z) + S(Y, Z)g(X,  W)  

- s ( x ,  z )g (v ,  w )  - s ( v ,  w ) g ( x ,  z ) }  

-']- ( n - l ~ n - - 2 ) { g ( X ,  W)g(Y, Z) - g(X, Z)g(Z, W ) } .  
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THEOREM 4: Let M n , n  > 3, be a submanifold of E m which satisfies Chen's 

equality. Then M ~ is conformally fiat if and only i f  inf K = O. 

Proof." This follows straightforward since the only components of C which 

are not yet trivially equal to zero are the components like C1221, C1331, C2332, 

C3443,... and they are all equal to a constant multiple of 1(12. | 

The c o n h a r m o n i c  c u r v a t u r e  (0, 4)-tensor K of M s is defined by [7] 

K(x ,  Y; z, w)  = R(X, Y; Z, W) - --~{S(V, Z)g(X, W)+ 

S(X, W)9(V, Z) - S(Y, w)g(X, Z) - S(X, Z)g(V, W)}, 

and, for n > 3, M n is conharmonically related to a Euclidean space, or M s is 

called c o n h a r m o n i c a l l y  f la t  if and only if K -- 0 [7]. It  is easy to see that  

M s is conharmonically flat if and only if it is conformally flat and has vanishing 

scalar curvature [6]. Similar to the characterization by I.M. Singer and J.A. 

Thorpe [10] of the 4-dimensional Einstein spaces by the fact that  K(~r) = K(Tr±), 

expressing that  the sectional curvatures of M 4 for orthogonal planar sections of 

its tangent space are equal, the 4-dimensional conharmonically flat spaces M 4 

are characterized by the fact that  K(Tr) = -K(Tr±) ,  see [12]. 

COROLLARY 5: Let M'~,n > 3, be a submanifold o r e  m which satisfies Chen's 

equality. Then M s is conharmonically fiat if and only if M n is an n-plane in E m . 

Proof'. If  K = 0, then C = 0 and T = 0. Hence by Theorem 4 we have K12 = 0. 

Since T = 2K12 + (n -- 2)(n -- 1)# 2, it follows that  p = 0, so that  M is totally 

geodesic. | 

4. Semi-symmetric submanifolds satisfying Chen's equality 

Locally symmetric manifolds M '~ are characterized by the parallelism of their 

curvature tensor, V R  = 0. More generally, s e m i - s y m m e t r i c  m a n i f o l d s  are 

characterized by the property that  R .  R = 0, meaning that  

( n ( X ,  Y)  . R)(U, V ) W  :=R(X,  Y)(R(U,  Y ) W )  - R ( R ( X ,  Y)U, V ) W -  

- R(U, R (X ,  Y ) V ) W  - R(U, V ) ( R ( X ,  Y ) W )  = 0 

for all tangent vector fields X, Y, U, V, W on M s. 



168 F. DILLEN, M. PETROVIC AND L. VERSTRAELEN Isr. J. Math. 

THEOREM 6: Let  M ~, n >_ 3, be a submanifold o f E  m satisfying Chen's  equality. 

Then M ~ is semi - symmetr ic  i f  and only i f  M ~ is a minimal  submanifold (in which 

case M ~ is (n - 2)-ruled), or M ~ is a round hypercone in some total ly  geodesic 

subspace E n+l o f E  m. 

Proo~ By an easy computation, we find that  

(1) (R(el, e3). R)(E2, ea)el = ap(bp - K12)e2 

and 

(2) (R(e2, e3). R)(el, = b , ( a ,  - K12)el. 

From the Lemma it is clear that  M n is a minimal submanifold of E m if and 

only if # = 0, and then M is (n - 2)-ruled and hence semi-symmetric [11]. So we 

can suppose that  p. ¢ 0. 

If K12 = 0, then fi'om (1) we get that  ab = O. Suppose a = 0, then from 

K12 -- 0 it follows that  ct = dt = 0. So all shape operators vanish unless A1. 

Moreover, im(h) is 1-dimensional and parallel, so M is essentially a hypersurface. 

From [4] then it follows that  M is a round cone. 

If K12 ~ 0, then from (1) and (2), we obtain that  a = b. Substituting this into 

(1) gives us b 2 n 2 + y~t=2(Ct + d~) = 0, so b = 0, which contradicts # ¢ 0. | 

Following [4] and [5], a submanifold M is called s e m l - p a r a l l e l  if 

R D ( x ,  Y ) h ( Z ,  W )  - h ( R ( X ,  Y ) Z ,  W )  - h(Z,  R ( X ,  Y ) W )  = 0 

for all X, Y, Z, W, where R D is the normal curvature tensor. 

Since semi-parallel submanifolds of Euclidean space are semi-symmetric, and 

minimal semi-parallel submanifolds of Euclidean spaces are totally geodesic (this 

is remarked in [4]), we have to following corollary. 

COROLLARY 7: Let  M '~, n >_ 3, be a submanifold o r e  m satisfying Chen's equal- 

ity. Then M ~ is semi-parallel i f  and only i f  M ~ is total ly  geodesic or a round 

hypercone in some total ly  geodesic subspace E n+l of  Em. 

R e m a r k  4: From [13] one may observe that  in particular the hypersurfaces M '~ 

of E '~+1 which satisfy Chen's equality contain as examples several classes of hy- 

persurfaces of pseudo-symmetry types which generalize semi-symmetry. An easy 

computat ion also shows that  R.  R = 0 in Theorem 6 can be replaced by R. S = 0. 
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